KEVIN COSTELLO Definition

نویسنده

  • KEVIN COSTELLO
چکیده

This is the first of two papers which construct a purely algebraic counterpart to the theory of Gromov-Witten invariants (at all genera). These GromovWitten type invariants depend on a Calabi-Yau A∞ category, which plays the role of the target in ordinary Gromov-Witten theory. When the Fukaya category of a compact symplectic manifold X is used, it is shown, under certain assumptions, that the usual Gromov-Witten invariants are recovered. The assumptions are that a good theory of open-closed Gromov-Witten invariants exists for X, and that the natural map from the Hochschild homology of the Fukaya category of X to the ordinary homology of X is an isomorphism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Witten Genus , after Kevin Costello

Definition 1.1. Given a ring R, a genus with values in R is a ring homomorphism, Ω ⊗Q→ R, where Ω is the G-bordism ring. For example, the Â-genus and L-genus are ring maps from Ω⊗Q→ Q. The Atiyah-Singer theorem shows that  can be refined to a genus Ω⊗Q→ Z. The L-genus (or signature) is defined on Ω⊗Q, and the Todd genus is defined on the complex cobordism category. We can define genera via mul...

متن کامل

A dual version of the ribbon graph decompositionof moduli space

In this note, I discuss a dual version of the ribbon graph decomposition of the moduli spaces of Riemann surfaces with boundary and marked points, which I introduced in the unpublished preprint [1], and used in [2] to construct open-closed topological conformal field theories. This dual version of the ribbon graph decomposition is a compact orbi-cell complex with a natural weak homotopy equival...

متن کامل

Balancing Gaussian Vectors

Let x1, . . . xn be independent normally distributed vectors on Rd. We determine the distribution function of the minimum norm of the 2n vectors ±x1 ± x2 · · · ± xn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004